Evrene Hükmeden Kadim Güçler: Doğadaki Dört Temel Kuvvet Hangileridir?

Fiziksel kuvvetler, caddede yürümekten uzaya roket fırlatmaya ve hatta buzdolabınıza yapıştırdığınız mıknatısa kadar, her yerde işliyor. Her gün deneyimlediğimiz (ve çoğunun farkında olmadığımız) tüm kuvvetler şu dört temel kuvvete indirgenebilir:

  1. Kütleçekim Kuvveti
  2. Zayıf Nükleer Kuvvet
  3. Elektromanyetik Kuvvet
  4. Güçlü Nükleer Kuvvet

Bunlara “doğanın dört temel kuvveti” denir ve evrende gerçekleşen her şey, bu kuvvetler tarafından yönetilir.

Kütleçekim Kuvveti

Kütleçekim kuvveti, kütlesi ya da enerjisi olan herhangi iki şey arasındaki etkileşimdir. Köprüden bırakılan bir taşta, Güneş’in yörüngesinde dönen bir gezegende ya da Ay’ın gelgitlere sebep olmasında da görülür. Bu kuvvet, muhtemelen anlaşılması en kolay olan ve en çok aşina olduğumuz ama aynı zamanda açıklanması da en zor olan kuvvet.

Isaac Newton (güya ağaçtan düşen bir elmadan esinlenerek) kütleçekim fikrini ortaya atan ilk kişiydi. Newton, kütleçekimi iki nesne arasındaki sürekli çekim olarak tanımladı. Asırlar sonra Albert Einstein, genel görelilik teorisinden yola çıkıp; kütleçekimin bir kuvvet değil, nesnelerin uzay-zamanı bükmesinin sonucu olduğunu öne sürdü. Büyük bir nesne, uzay-zamanı; gergin çarşafın üzerine bırakılan büyük bir topun, zemine doğru esneterek daha küçük diğer nesnelerin topa doğru kaymasına sebep olmasıyla aynı şekilde etkiler.

Kütleçekimi; gezegenleri, yıldızları, yıldız sistemlerini ve hatta galaksileri bile bir arada tutmasına rağmen, özellikle moleküler ve atomik ölçeklerde temel kuvvetlerin en zayıf olanıdır. Şu şekilde düşünün: Bir topu veya ayağınızı kaldırmak ne kadar zor? Peki ya zıplamak? Tüm bu eylemler yer çekimini etkisiz kılmak (veya “yenmek”) demek! Moleküler düzeyde ise kütleçekimi, diğer temel kuvvetlere kıyasla neredeyse hiçbir etkiye sahip değil.

Zayıf Nükleer Kuvvet

Zayıf nükleer etkileşim ya da zayıf kuvvet olarak da bilinen zayıf nükleer kuvvet, parçacık bozunumundan sorumludur. Bu bir atom altı parçacığın, bir diğerine dönüşmesidir. Örneğin, bir nötronun yakınlarında dolanan bir nötrino; kendisi elektrona dönüşürken nötronu da protona dönüştürür.

Fizikçiler bu etkileşimi, “bozon” adı verilen kuvvet taşıyıcı parçacıkların değişimi yoluyla tanımlar. Zayıf nükleer kuvvet, güçlü nükleer kuvvet ve elektromanyetizmadan sorumlu spesifik bozonlar vardır. Zayıf nükleer kuvvetteki bozonlar, W ve Z bozonları adı verilen yüklü parçacıklardır. Eğer proton, nötron ya da elektron gibi atom altı parçacıklar birbirlerine 10-18 metre ya da bir protonun çapının %0.1’i kadar yaklaştıklarında bu bozonları birbirleriyle değişirler ve sonuç olarak yeni parçacıklara dönüşürler.[1]

Zayıf kuvvet, Güneş’e güç sağlayan ve Dünya’daki çoğu yaşam formu için gerekli enerjinin üretilmesinde rol oynayan nükleer füzyon tepkimelerinde kritik öneme sahiptir. Ayrıca, arkeologların antik kemik, ahşap ve diğer eski eserleri tarihlendirmek için Karbon-14’ü kullanmasının sebebi de budur. Karbon-14, altı proton ve sekiz nötrondan oluşur. Bu nötronlardan biri protona dönüşünce, Azot-14’ü elde etmiş oluruz. Bu bozunmalar; bilim insanlarının bu eserlerin kaç yıllık olduğunu saptamasına olanak sağlayan, öngörülebilir oranlarda gerçekleşir.

Elektromanyetik Kuvvet

Lorentz Kuvveti olarak da bilinen elektromanyetik kuvvet; protonlar ve elektronlar gibi yüklü parçacıklar arasında rol oynar. Zıt yükler birbirini çekerken, aynı yükler birbirini iter. Yükler arttıkça kuvvetin büyüklüğü de artar. Tıpkı kütleçekimi gibi elektromanyetik kuvvet de sonsuz mesafelerden hissedilebilir (tabii ki o mesafelerde çok çok küçük olur).

Elektromanyetik kuvvet, isminden de anlaşılacağı üzere, şu iki bileşenden oluşur: elektriksel kuvvet ve manyetik kuvvet.Başlangıçta fizikçiler, bunları birbirinden ayrı kuvvetler olarak tanımladı ancak daha sonra aynı kuvvetin iki bileşeni olduklarının farkına vardılar.

Elektrik bileşeni, hareketli ya da sabit yüklü parçacıklar arasında işleyerek yüklerin birbirini etkileyebileceği bir elektrik alan oluşturur. Ancak harekete geçtiklerinde, yüklü parçacıklar ikinci bileşen olan manyetik kuvveti oluşturmaya başlar. Parçacıklar hareket ederken etraflarında bir manyetik alan oluşmasına sebep olurlar.Yani, telefonunuzu veya dizüstü bilgisayarınızı şarja taktığınızda ya da televizyonunuzu açtığınızda kablodan cihazınıza doğru giden elektronlar; kabloyu manyetik hale getirir.

Elektromanyetik kuvvetler; aynı zamanda ışığın parçacık bileşeni olan, foton adı verilen kütlesiz kuvvet taşıyıcı bozonların yüklü parçacıklar arasında değiş tokuşu yoluyla aktarılır.Bununla birlikte, yüklü parçacıklar arasında geçiş yapan kuvvet taşıyıcı fotonlar; fotonların farklı bir tezahürüdür. Teknik olarak gerçek ve tespit edilebilen fotonlarla aynı parçacıklar olmalarına rağmen bunlar sanaldır ve saptanamaz.[2]

Elektromanyetik kuvvet, sık sık karşılaştığımız şu gibi olaylardan sorumludur: sürtünme, esneklik, normal kuvvet, katıları bir arada ve belirli şekillerde tutan kuvvet vb. Hatta kuşların, uçakların ve Süpermen’in uçarken maruz kaldığı hava direncinden bile sorumludur. Bütün bu eylemler yüklü (veya nötrleşmiş) parçacıkların birbirleriyle etkileşiminden meydana gelebilir. Örneğin, bir kitabı masanın üstünde tutan normal kuvvet (yer çekiminin kitabı yere çekmesi yerine); masanın atomlarındaki elektronların, kitabın atomlarındaki elektronları itmesinin bir sonucudur.

Güçlü Nükleer Kuvvet

Güçlü nükleer kuvvet (güçlü kuvvet ya da güçlü nükleer etkileşim) dört temel kuvvet arasında en güçlü olandır. Kütleçekim kuvvetinden 6 bin trilyon kere trilyon kere trilyon (Bu, 6’dan sonra 39 sıfır demek!) kat daha güçlüdür. Bunun sebebi maddeyi oluşturan temel parçacıkları, daha büyük parçacıklar oluşturabilmek için birbirine bağlamasıdır. Güçlü nükleer kuvvet, atomun çekirdeğindeki protonları ve nötronları, ve bunları oluşturan kuarkları bir arada tutar .

Tıpkı zayıf kuvvet gibi, güçlü nükleer kuvvet de atom altı parçacıklar ancak birbirlerine çok yaklaştıklarında etkin hale gelir. Parçacıklar birbirlerine 10-15 metre ya da kabaca bir protonun çapından daha yakın mesafede olmalıdır.

Güçlü nükleer kuvvet biraz tuhaftır; çünkü diğer kuvvetlerin aksine, parçacıklar birbirlerine yaklaştıkça zayıflar. Maksimum güce, parçacıklar birbirlerine en uzak mesafede olduğunda ulaşır. Menzile girdiklerinde; gluon adı verilen kütlesiz, yüklü bozonlar kuarklar arasındaki güçlü kuvveti iletir ve onları yapıştırılmış halde tutar. Güçlü kuvvetin küçük bir kısmı olan “kalıntı” güçlü kuvvet, protonlar ve nötronlar arasında rol oynar. Çekirdekteki protonlar aynı yüklü olduklarından birbirini iter ancak kalıntı güçlü kuvvet bunun üstesinden gelebilir, böylece çekirdekteki parçacıklar bir arada kalır.

Doğayı Birleştirmek…

Dört temel kuvvet hakkında en çok öne çıkan soru; bu kuvvetlerin tek, büyük bir kuvvetin farklı dışavurumları olup olmadığıdır. Eğer öyleyse, birbirleriyle birleşebiliyor olmaları lazım ve bunu gösteren kanıtlar var!Harvard Üniversitesi’nden Sheldon Glashow ve Steven Weinberg, Imperial College London’dan Abdus Salam’la birlikte; “elektrozayıf kuvvet“kavramını oluşturmak için elektromanyetik kuvvet ve zayıf kuvveti birleştirmelerinden ötürü 1979 yılında Nobel Fizik Ödülü’ne layık görüldüler.

Büyük Birleşik Teori adı verilen teori için çalışan fizikçiler;modellerin öngördüğü ancak araştırmacıların henüz gözlemlemediği bir elektronükleer kuvveti tanımlamak için, elektrozayıf kuvvetle güçlü kuvveti birleştirmeyi amaçlıyorlar. Eğer bu da gerçekleşirse yapbozun son parçası olarak da; tüm evrenin işleyişini teorik bir çerçevede açıklamamızı mümkün kılacak bir ”Her Şeyin Teorisi” ni geliştirmek için, elektronükleer kuvvet ile kütleçekim kuvvetini birleştirmemiz gerekecek.

Bununla beraber, fizikçiler makro evrenle mikro evreni birleştirmenin oldukça zor olduğunu düşünüyorlar; çünkü büyük, astronomik ölçeklerde kütleçekimi ön plana çıkıyor ve en iyi şekilde Einstein’ın genel görelilik teorisiyle açıklanıyor. Moleküler, atomik veya atom altı ölçeklerde ise kuantum mekaniği doğayı en iyi şekilde açıklıyor. Şu ana kadar kimse bu iki dünyayı (makro ve mikro) birleştirmeyi başaramadı.

Kuantum kütleçekimi üzerine çalışan fizikçiler; kuvveti, birleşmeye yardımcı olabilecek şekilde, kuantum dünyası üzerinden tanımlamayı amaçlıyorlar. Bu yaklaşımın temeli; graviton adı verilen, kütleçekimi taşıyan teorik kuvvet taşıyıcı bozonların keşfi olacaktır.Kütleçekimi, fizikçilerin kuvvet taşıyıcı bozonlar olmadan açıklayabildikleri tek temel kuvvettir. Ancak diğer temel kuvvetlerin açıklanmaları bozonları gerektirdiğinden; fizikçiler, araştırmacıların henüz keşfedemediği gravitonların atom altı ölçekte var olması gerektiğini düşünüyorlar.

Hikayeyi daha da karmaşık hale getiren ise, evrenin kabaca %95’ini oluşturan karanlık madde ve karanlık enerjinin görünmez alanı. Karanlık madde ve karanlık enerjinin tek bir parçacıktan mı yoksa kendi kuvvetleri ve taşıyıcı bozonları olan bir parçacıklar takımından mı oluştuğunu bilmiyoruz. Şu anda ilgi çeken birincil taşıyıcı parçacık, görünür ve görünmez evren arasındaki etkileşimlere aracılık edebilecek olan teorik karanlık foton. Eğer karanlık fotonlar gerçekten varsa bu, karanlık maddenin görünmez dünyasına ve beşinci bir temel kuvvetin keşfine açılacak bir kapı olur. Gerçi şu ana kadar karanlık fotonların varlığını destekleyen bir kanıtımız yok ve hatta bazı araştırmalar bu parçacıkların var olmadığına dair güçlü kanıtlar öne sürdü.

kaynak:evrimağacı